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[1] Climate change may impact water resources management conditions in
difficult-to-predict ways. A key challenge for water managers is how to incorporate highly
uncertain information about potential climate change from global models into local- and
regional-scale water management models and tools to support local planning. This
paper presents a new method for developing large ensembles of local daily weather that
reflect a wide range of plausible future climate change scenarios while preserving many
statistical properties of local historical weather patterns. This method is demonstrated by
evaluating the possible impact of climate change on the Inland Empire Utilities Agency
service area in southern California. The analysis shows that climate change could impact the
region, increasing outdoor water demand by up to 10% by 2040, decreasing local water
supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15%
by 2040. The range of plausible climate projections suggests the need for the region to
augment its long-range water management plans to reduce its vulnerability to climate change.
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1. Introduction

[2] Climate change is important to water planners and
managers because it may change underlying water manage-
ment conditions [Barnett et al., 2008; Intergovernmental
Panel on Climate Change (IPCC), 2007a] and increase the
need for new water management programs and capital
investments [California Urban Water Agencies, 2007].
Climate change may also confound water resources plan-
ning because the local effects of climate change are so
uncertain and difficult to predict [Knopman, 2006; Miller
and Yates, 2006; Stakhiv, 1998]. The most reliable infor-
mation about how the climate may change is available on
coarse geographical scales, whereas water managers must
respond to changes that occur at the local and regional level
[Kim et al., 1984; Lamb, 1987]. A key challenge for water
managers is how to incorporate potentially-significant and
highly uncertain information about potential climate
changes into available water management models and tools
to support local management decisions.
[3] Studies have shown that it is important to include

the effects of climate change in local water planning
[Schimmelpfennig, 1996]. Risbey [1998], seeking to link
present-day planning decisions to uncertain future climate
projections, for example, performed a qualitative sensitivity
analysis that showed that water-planning decisions were
sensitive to uncertainty in the range of global climate model
simulations for the Sacramento basin in California. More

recently, researchers have used integrated water resource
planning models to evaluate the impact of climate perturba-
tions on the performance of current water management
systems [Brekke et al., 2004; Vicuna et al., 2007; Zhu et
al., 2005].
[4] The most comprehensive projections of future global

climate conditions are provided by atmosphere-ocean general
circulation models (AOGCMs). Problematically to water
planners, however, outputs from AOGCMs are typically
available at spatial scales of 100 kilometers or more.
Furthermore, different AOGCMs run under the same
greenhouse gas emissions forcing scenario can produce
profoundly different projections of temperature and
precipitation change, particularly at the regional scale (see
chapter 10 of IPCC [2007b] for a comprehensive discussion
of AOGCM predictions).
[5] In order to directly evaluate how global projections of

climate change will impact local or regional water agencies,
water planners will need climate change information at
spatial scales comparable to their service area and the source
regions of their supplies. A commonly-used approach is to
statistically ‘‘downscale’’ individual AOGCM model results
to a local scale. In general, the primary goal in downscaling
is to post-process the AOGCM output so that it reflects the
large-scale features and temporal trends from the AOGCM
simulation, but also the historical patterns of climate varia-
bles at the regional and local scale [Fowler et al., 2007;Wood
et al., 2004]. This is typically done by developing a statistical
relation between atmospheric quantities characterizing large-
scale processes (e.g., height of the 500 millibar (mb) atmo-
spheric pressure field) and those local quantities that are
relevant to a watershed manager (e.g., precipitation and
temperature at specific locations in the watershed). Other
methods include bias-correcting AOGCM data to more
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closely match regional climate, and then spatially disaggre-
gating the data to the local scale [Maurer, 2007].
[6] There are several limitations to traditional downscal-

ing procedures. For example, while AOGCMs are able to
simulate large-scale climate features realistically, they
typically exhibit important biases at regional-scales, which
is problematic for analysis of implications of climate
change for hydrology and water resources [Maurer, 2007;
Wood et al., 2004]. Another challenge is that the down-
scaling procedure produces individual weather sequences
corresponding to single AOGCM model runs, restricting
the number of weather sequences developed. As AOGCMs
produce significantly different climate change responses, a
water manager is left to wonder which downscaled climate
scenarios to use and if the available runs represent all the
plausible projections of interest. As these downscaling
methods do not allow for the development of other variants
of the AOGCM run-specific weather sequences, one cannot
evaluate the implications of droughts that occur at times
different than those projected by the specific AOGCM
simulation.
[7] Another approach is to develop weather generators

that synthetically create new sequences of weather that are
statistical similar to historical climate and include other
imposed trends [Kilsby et al., 2007]. This method, however,
requires the development of a new statistical model appro-
priate for each location in which weather sequences are
sought. For regions in which these relationships have not
yet been developed, significant new analysis is required, a
task that is likely outside the expertise of many water
agency planners.
[8] This paper proposes an approach that generates syn-

thetic sequences of local weather data (e.g., temperature and
precipitation) that reflect both local weather variability and
regional trends projected by AOGCMs. This approach relies
on a methodology that combines predictions from individual
AOGCMs into a single probabilistic climate projection for a
region of interest using the criteria of bias and convergence
[Tebaldi et al., 2005]. Such probabilistic regional projections
are then used to guide a K-nearest neighbor (K-nn) boot-
strapping technique [Yates et al., 2003] to develop an
arbitrarily-large number of individual weather sequences that
have the same statistical characteristics of local weather but
are consistent with the range of AOGCM-derived tempera-
ture and precipitation trends.
[9] This generic approach enables an analyst to develop

any number of weather sequences that reflect uncertainty
about the effects of climate change uncertainty to use with
local or regional water management models. The paper
concludes by demonstrating how this climate information
can be incorporated into a hydrologically-based water
planning model using a case study of the Inland Empire
Utilities Agency (hereafter, IEUA), a water and wastewater
wholesaler in southern California. The case study suggests
that this method could have broad applicability to local
water utilities and regional water assessments both in the
US and abroad.

2. Creating Local Climate Change Scenarios
From Coarse-Scale AOGCMs

[10] Determining plausible ranges and likelihoods of
global climatic changes has flourished as a research topic

in recent years [Pittock et al., 2001; Tebaldi et al., 2004,
2005; Yates et al., 2003]. Some of this work has been based
on energy balance or reduced climate system models that
run quickly and can be evaluated under many different
configurations and parameterizations to develop ensembles
of results. However, these low-dimensional models do not
extend in a straightforward way to small-scale regional and
local climate change analyses because of the observed
spatial heterogeneity of past climate and, by inference,
projected future changes. This is particularly problematic
in the water resources planning arena, as it is at the local and
regional scale where climate change impacts will express
themselves. However, recent coordinated efforts, in which
numerous higher-resolution, fully-coupled climate models
have been run for a common set of experiments, have
produced large data sets that can be used to generate
probabilistic estimates of future climate at global and
regional scales.

2.1. Ensemble Climate Projections From AOGCMs
for Southern California

[11] There are two main approaches for combining the
results of many AOGCMs (i.e., multimodel ensemble
output) for purposes of driving climate impact assessment
models. One simply considers each model as equal and
produces ensemble averages and measures of inter-model
variability (e.g., standard deviation and range). The other,
formalized by several published methods, weights model
results unequally based on different measures of model
merit. For example, the Reliability Ensemble Average
(REA) approach [Giorgi and Mearns, 2002] weighs more
heavily models that are characterized by small bias in
modeling historical climate (in terms of multidecadal aver-
ages of regionally and seasonally aggregated temperature and
precipitation) and that agree with the ensemble ‘‘consensus’’.
This approach motivated the work of Tebaldi et al. [2004,
2005].
[12] Tebaldi et al. [2005] derived regional probability

distributions of future climate from the output of individual
AOGCMs using a fully Bayesian approach to combine the
predictions of the individual forecasts into a single proba-
bilistic forecast which formalizes as a consequence of the
statistical assumptions the REA criteria of bias and conver-
gence. A posterior distribution of the climate signal is
developed using historical data and the AOGCMs’ projec-
tions. An initial prior distribution, chosen to be non-
influential (i.e., one that is ‘‘flat’’ over a wide range of
possible values for the future temperature or precipitation
change), is updated numerically using Bayes’ theorem to
account for the observed record and the ‘‘new’’ observations
of the future conditions as estimated by individual AOGCMs.
In the posterior estimate of the climate change signal, the
AOGCMs that perform well in recreating recent climate (low
bias) and that show convergence (i.e., contribute to the
consensus in the future trajectories) are weighted more
heavily. Recognizing that current AOGCMs are not com-
pletely independent, this method treats the convergence
criterion less stringently [Tebaldi et al., 2004]. Also, as a
consequence of the fundamental lack of correlation between
the size of the model bias and the magnitude of its projected
change, the derived probability density functions (PDFs) do
not differ significantly from a smoothed histogram of the
original model projections of change, with the mode of the
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PDF close to the simple ensemble mean. Other methods have
been proposed that combine multimodel ensembles into
probabilistic projections either at themodel grid scale [Furrer
et al., 2007] or at large, subcontinental regional scales
[Greene et al., 2006]. The method by Tebaldi et al. has been
further developed by Smith et al. [2008] and is easily adapted
to any arbitrarily shaped and sized region.
[13] For this study we use the climate simulation results

from twenty-one state-of-the-art AOGCMs from the World
Climate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project phase 3 (CMIP3) multimodel data
set (available from http://www-pcmdi.llnl.gov/ipcc/about_
ipcc.php). Standardized experiments have been run using
these models under different scenarios of future greenhouse
gas emissions, and we use the AOGCM results from the
A1B scenario—a mid-range emissions scenario whose
trajectory can be defined close to a ‘‘business as usual’’
scenario [IPCC, 2000]. It is important to note that for the next
several decades, the atmospheric greenhouse gas concentra-
tions do not significantly differ in response to different
emissions trajectories.

[14] In our case study of the IEUA service area, we area-
average the seasonal surface temperature and precipitation
projections from each AOGCM for the four grid points
covering the southern California area for a baseline period
(1980–1999) and two future periods of interest (2020–
2039) and (2040–2059). We use 20-year averages in order
to isolate as much as possible (1) the signal of change
caused by the externally forced change in GHG concentra-
tion from (2) the signal of multidecadal variability that may
be present in the model projections. This is especially
relevant for the shorter ‘‘forecast’’ time, when GHG con-
centrations are not much higher compared to that of the
baseline period. We then applied the Bayesian model that
combines area-averaged values into probability distribution
functions of temperature and precipitation change.
[15] Figures 1 and 2 show PDFs of summer (June, July,

and August) temperature change (in degrees C) and winter
(December, January, and February) precipitation change (in
percent precipitation change) from the baseline period
(1980–1999) to 2030. The individual changes as estimated
by each AOGCM are indicated by a triangle on the x-axis
(biases of the individual models used in the Bayesian

Figure 1. Probability density function of summer temperature change between 2000 and 2030 for the
A1B SRES scenario and the southern California region. Points on the curve refer to the deciles of the
PDF. Triangles indicate trends from the individual AOGCMs.

Figure 2. Probability density function of winter precipitation change between 2000 and 2030 for the
A1B SRES scenario and the southern California region. Points on the curve refer to the deciles of the
PDF. Triangles indicate trends from the individual AOGCMs. One model outlier exists at +45%.
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analysis—which are not correlated to the projected changes
reflected in the PDFs—are shown in Figure 3). Figure 1
shows a range of projected summer temperature change
between slightly below zero to over two degrees Celsius.
The winter precipitation changes predicted by the individual
AOGCMs range from a 25% decrease to a 20% increase
(although there is one outlier result that projects a 45%
increase). The resulting densities indicate a stronger con-
sensus of drier winter conditions relative to the current
climate. The outcome of the combined AOGCM projections
for precipitation change is typical of many regions, partic-
ularly in mid-to-low latitudes, where there is low agreement
among the different models [IPCC, 2007b].
[16] Note that the Bayesian model is run separately for

both precipitation and temperature, and does not provide
joint probabilistic projections. A regression analysis of
16 AOGCM projected annual temperature and annual
precipitation trends over the study area from 2005–2050
(for the A1b emissions scenario) shows a weak, statistically
insignificant negative correlation (p = 0.323). When two of
the 16 temperature trend and precipitation trend pairs are
excluded, however, the negative relationship become highly
significant (p = 0.000). Following this suggestive evidence,
we assumed that temperature and precipitation trends will
be negatively correlated, and so the driest (wettest) range of
the precipitation trends corresponds to the warmest (coolest)
temperature trends. This assumption is conservative, in that
it will lead to the most inclusive set of plausible climate
scenarios as a basis of testing the water-management plans
of the IEUA region.

2.2. Generating Local Climate Sequences From the
Regional Densities Using K-nn

[17] We next use these regional climate change distribu-
tions to develop information relevant for a regional water
resource planning model. The technique presented here uses
the output from the Bayesian method to condition a K-nearest
neighbor (K-nn) resampling scheme that generates daily
weather sequences yielding ensembles of alternative climate
data [Yates et al., 2003]. The K-nn algorithm produces daily
weather variables at multiple stations within the region
covered by the AOGCM grid boxes used to develop the
trend distribution. The derived weather sequences preserve
the spatial and temporal dependencies and important cross
correlations and autocorrelations of the local historical
weather while reflecting large-scale climate trends from the
Bayesian model. This technique allows for the creation of
ensembles of local climate scenarios that can be used in a
water planning model for addressing the potential impacts of
climate change and climate variability, placed within an
uncertainty analysis framework.
[18] K-nn creates new, synthetic weather sequences by

resampling the historic daily data set in such a way that the
statistical properties of the observed weather data are
preserved. The K-nn Step 1 selects a random starting
calendar day; say a 1 January from all N available 1 January.
Step 2 defines a window of days, w to the left and right of
the starting day selected in Step 1, and aggregates the daily
weather station data into a regional mean. The regional
mean is used to find candidate days similar to the day
chosen in Step 1, where similarity is based on a Mahala-
nobis distance measure (see Yates et al. [2003] for details).

Figure 3. AOGCM model biases in terms of (left) summer (JJA) average temperature (in degrees
centigrade) and (right) winter (DJF) average precipitation (in percentage difference from current
observations). The asterisks indicate the three models that are used only for the temperature analysis.
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With a window width of w = 7 and a data set with N =
24 years, the total number of candidate days then given
as k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ 1ð Þ � N½ � � 1

p
or k = 19 [Rajagopalan and

Lall, 1999]. One of the k similar days is then randomly
selected (Step 3), and represents a day similar to 1 January
selected in Step 1. The subsequent day to this selected day is
used as the successor, leading to a new 2 January (Step 4).
The window of days is then shifted one day to the right, and
Steps 2 through 4 are repeated. Successive iterations of these
steps then generate new, unique daily time series that have
many of the same statistical properties such as autocorrela-
tion, cross-covariance, and mean value as the original data
[Yates et al., 2003].
[19] To reflect a changing climate, as suggested by the

Bayesian climate trends, the pool of ‘‘similar days’’ from
which the next day is selected can be biased to include more
warm/cold or wet/dry days. Biased resampling requires a
conditioning criterion to select a subset of years, n 2 N, that
will be used in the K-nn algorithm. The simplest criterion
would be some large-scale climate signal such as the El
Nino/Southern Oscillation (ENSO) index, where only years
with a particular ENSO attribute would comprise the n 2 N
subset (e.g., only resample from days of daily data). This
approach would work fine for short weather sequences,
such as a year; but for longer sequences, it would be
desirable to dynamically select an n subset from the
population of N years so that longer weather sequence
could reflect different climate regimes. To do this, a
temporal, probabilistic resampling scheme is introduced
that generates a subset of days for each week w of year t
whose days have a higher or lower probability of being
selected based on a weighting criterion.
[20] The weighting criterion is based on a table of weekly

climate anomalies, estimated from historic climate data.
These weekly anomalies are assigned a ranked index, Iw

N,
for all weeks w and years N. Table 1 shows an example of
this ranking using precipitation data from the IEUA service
area (from 1980 to 2003), where regional precipitation
anomalies are ranked from driest to wettest. For example,
in the 24 years of observational data, the driest week 1 (e.g.,
the period 1 through 7 January) was 1981, while the wettest
week 1 was 1995. The driest week 2 was the year 1983,
while the wettest week 2 was 1993; and so on.
[21] To generate the nw

t subset, an index function is used
to randomly generate indices ranging from i = 1 to N,

I iw ¼ INT N 1� ud
i
w

� �h i
þ 1 ð1Þ

where u is a uniform random number, U(0, 1) and dw
i is a

weighting parameter that is used to bias years in the ranked
list. In Table 1, years are ranked from driest, with an index
value of 1, to wettest, with an index value of N. A weight
parameter, dw

i = 1.0, means each year has an equal proba-
bility of making up the nw

t subset, values greater than 1.0
will tend to bias the selection of wet years, while weight
parameter values less than 1.0 will tend to bias dry years.
The weight parameter, dw

i of equation (1) can be estimated
both by week (intra-annual change) and by year (inter-
annual change). With a given set of dw

i weights, equation (1)
can be randomly queried, leading to a set of indices that
correspond to particular years from the ranked list. Finally,
this yields a set of biased years, nw

t from which K-nn can
resample.
[22] The AOGCM-based Bayesian estimate of changes in

seasonal precipitation (DP 0
s
i) and temperature (DT 0

s
i) for

southern California were linearly interpolated into weekly
time series, DP 0

w
i and DT 0

w
i from 2000 to 2060. These

interpolations were made for the nine discrete intervals and
for each of the four seasons (see Figures 1 and 2). These
were then used to establish the weighting parameter, dw

i for
conditioning K-nn, where dw

i = awDP 0
w
i + bwDT 0

w
i . The

aw and bw coefficients were determined by trial-and-error to
minimize the difference between the Bayesian estimates of
climate change and the difference between the future
synthetic climate and the mean regional climate from the
historic record. For precipitation, this can be expressed as,

min DP 0i
s � 1

K

XK
i¼1

P
_i

s� P
_
os

 !" #
ð2Þ

where the regional mean total precipitation for year i and
season s is:

P
_i

s ¼
1

m

Xm
j¼1

P
_i

j;s ð3Þ

and P
_

j,s
i is the season total precipitation for station j and year

i; while P̂os is the seasonal station mean computed from the
observations. The total number of stations is m and K is the
number of synthetic sequences generated by K-nn. Figure 4
shows the final weights, dw

i , and the corresponding change
in precipitation from the Bayesian model for two select
deciles: 2 and 8.
[23] For the case of the IEUA, N = 24 years of daily

weather data (1980 through 2003) for m = 11 stations were
used to generate biased daily weather sequences with K-nn,
conditioned off the results from the Bayesian analysis
[Thornton et al., 1997]. For nine deciles of the distributions
shown in Figures 1 and 2, 20 realizations were made leading
to a total of 180, 60-year time series. Note that realizations
are assigned a decile based on the temperature and precip-
itation trend applied in the conditioning. Because of the
stochastic factors in the K-nn analysis, the precipitation and
temperature trends for individual realizations may not
always order according to a decile. For example, some
decile 3 realizations may have larger temperature trends
than some deciles 2 realizations.
[24] Figures 5 and 6 compare the K-nn simulated data,

the AOGCM ensemble results, and the historical data for

Table 1. A Portion of the Ranked List of Regional Precipitation

Anomalies by Week and Yeara

Categorical
Year Iw

N Week 1 Week 2 . . . Week 52

1; dry Year 1 1981 1983 . . . 1980
2; dry Year 2 1983 1984 . . . 1985
. . . . . . . . . . . . . . . . . .
N; wet Year 24 1995 1993 . . . 1994

aSee text for details.

W12413 GROVES ET AL.: USING GLOBAL CLIMATE CHANGE PROJECTIONS

5 of 16

W12413



three discrete deciles (1, 5 and 9) of the Bayesian trend
distributions for winter precipitation and season tempera-
ture. The data from the entire historical period can be
summarized as a single box plot, which is shown on the
left portion of the graph as total seasonal precipitation
(Figure 5) and temperature (Figure 6) averaged over the
region. These box plots represent the range of precipitation
and temperature present in the sample of historical data, and
should be compared with box plots to the right that
summarize each year of simulated data. Linear and non-
linear (e.g., loess—see Cleveland and Devlin [1988]) trends
in the historical data indicate a decrease in winter precipi-
tation and an increase in summer temperatures throughout
the brief historical period.
[25] The right portion of each figure includes box plots

that summarize the simulated data for precipitation and
temperature for a select set of deciles. Each individual box
plot summarizes all 20 realizations created for a given year.
The variance within these values is approximately equivalent
to that of the historical data. The thick, light lines in the
figures depict the linear trend from the Bayesian analysis,
while the dark line is the mean of all 20 realizations.

Values of dw
i were chosen so these lines closely matched

(e.g., the minimization expressed in equation (2)). Note
that decile 1 corresponds to the ‘‘very-warm and dry’’
scenarios, while decile 9 are the ‘‘warm and wet’’ scenarios.
Also worth noting, the variance within each simulated
series remains about constant throughout each time series
realization.
[26] Figure 7 shows three representative sequences of

summer temperature and winter precipitation from 1980 to
2060. The data from 1980 to 2003 are based on historical
data. The data from 2004 to 2060 are based on three
realizations of the K-nn procedure, corresponding to a range
of conditioning trends.

3. Utilizing the Local Weather Sequences in a
Water Management Model

[27] The local weather sequences created using the
Bayesian-K-nn method can be used with an integrated water
resource management (IWRM) model to evaluate the im-
pact of climate change on a water management system. The
literature is rich with IWRMs that have tended to focus on

Figure 4. (Left) Percentage change in precipitation for (top) decile 2 and (bottom) decile 8 and the
(right) final weights used by K-nn to condition the resampling process by month (vertical axis) and year
(horizontal axis).
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either understanding how water flows through a watershed
in response to hydrologic events or on allocating the water
that is available in response to those events. The Water
Evaluation and Planning Version 21 (WEAP) IWRM (avail-
able from http://www.weap21.org) attempts to address the
gap between water management and watershed hydrology
by integrating a range of physical hydrologic processes,
including rainfall-runoff and snow physics, with the man-
agement of demands and installed infrastructure by simulat-
ing the water balance for a user-constructed, link-and-node
representation of a water management system [Yates et al.,
2005a, 2005b]. WEAP allows for multiple-scenario analysis,
reflecting uncertainty about climate change and anthropo-
genic stressors, such as land use variations, changes in
municipal and industrial demands, alternative operating
rules, and points of diversion changes. Of particular interest
to this study, WEAP can evaluate the impact of alternative
sequences of local weather conditions (e.g., temperature,
precipitation, humidity, and wind speed) on soil moisture
and irrigation requirements, surface and subsurface rainfall

runoff, and percolation of precipitation and irrigation into
aquifers. The WEAP IWRM has been applied to numerous
watersheds and districts throughout the world, including the
Sacramento Valley, in California [Yates et al., 2008]. Huber-
Lee et al. [2006] provide additional background on WEAP
and present three municipal water case study applications.

4. A Case Study of the Inland Empire Utilities
Agency in Southern California

[28] To demonstrate how the climate change data derived
from the Bayesian-K-nn approach described above can be
utilized in a water planning model to inform water planning
decisions, we present a case study focused on the service
area of the Inland Empire Utilities Agency (IEUA), a
wholesale water and wastewater provider in Riverside
County, southern California (Figure 8). This analysis rep-
resents a subset of work performed in collaboration with
IEUA staff members and focuses on illustrating the range of
impacts that climate may have on the water system. Work
examining new approaches to interpreting this information

Figure 5. Winter precipitation (December, January, and February) for the historic period (1980 through
2003) with a (left graph) trend and loess lines and summarized as a (far left) box plot. Right portion of
graph are the K-nn simulated time series of annual precipitation, given as box plots for all realizations (K =
20). The thick, light-colored line is the AOGCM ensemble climate change estimate relative to the historic
mean.
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for decision making is presented by Groves et al. [2008a,
2008b].
[29] The IEUA region is in the midst of rapid urban

growth and transformation from an agricultural region dom-
inated by dairy farms to industrial and planned residential
developments. It is projected that the region’s population of
800,000 will grow to approximately 1.2 million by 2025,
placing new demands on the water supply and wastewater
treatment system [IEUA, 2005].
[30] The IEUA region currently meets slightly more than

half of its average water needs from groundwater sources
within the region (primarily the underlying Chino Ground-
water basin aquifer), about a quarter from Northern Cal-
ifornia via a large intra-state water distribution system (i.e.,
the California State Water Project), and the rest from local
rivers and streams and a rapidly expanding recycled water
system [IEUA, 2005]. The Chino Groundwater basin was
adjudicated in 1978 [Chino Basin Municipal Water District
v. City of Chino, 1978] and is managed to maximize
sustainable extractions of groundwater according to the
Chino Basin Optimum Management Program (OBMP)

[Wildermuth Environmental, 1999]. Two key components
of the groundwater program are (1) a comprehensive
program to replenish the groundwater basin with imported,
recycled, and local storm water and (2) limitations on
extractions to ensure long-term sustainability. The manage-
ment plan stipulates that allowable extractions will be
adjusted over time to respond to changing groundwater
conditions.

4.1. Plausible Impacts of Climate Change to the
IEUA Region

[31] A simple qualitative assessment of the region’s
system would suggest that climate change has the potential
to impact water supply reliability by increasing irrigation
demands, decreasing the natural recharge of the groundwa-
ter basin that would lead to more stringent restrictions on
groundwater use, decreasing local runoff and derived mu-
nicipal supplies, and reducing the availability of imported
water from Northern California.
[32] To quantitatively assess the ranges of plausible

impacts that climate change may have upon water manage-

Figure 6. Same as Figure 5 but for average summer temperature (June, July, and August).
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ment in the IEUA service area, we developed a WEAP
model that estimates the performance of IEUA’s water
management strategies under each of the future weather
sequences produced by the Bayesian-K-nn procedure

described above. To automate the generation and manage-
ment of a large number of WEAP simulations corresponding
to the developed climate change weather sequences (or
scenarios), we used the Computer Assisted Reasoning system
(CARsTM), available from Evolving Logic (www.evolvinglogic.
com).
[33] The WEAP model was designed to produce under

nominal assumptions results that are consistent with the
various IEUA estimates of water demand and supply
included in the IEUA 2005 Regional Urban Water Man-
agement Plan (hereafter, IEUA RUWMP) [IEUA, 2005].
The WEAP model necessarily simplifies a complex water
management system and thus assessed climate impacts may
be biased. The ultimate purpose of the analysis, however,
was to develop and illustrate new approaches for addressing
climate uncertainties in water planning—not necessarily to
develop the most comprehensive or accurate model repre-
sentation of the case study area.
[34] The WEAP model simulates water supply and

demand using a stylized representation of the major water
flows of the system on a monthly time scale from 2005 to
2040. The model represents supply and demand relation-
ships by using a set of nodes corresponding to discrete
water management elements such as catchments, indoor-
demand sectors, surface supplies, and groundwater basins.
These elements are linked together by rivers, conveyance
facilities, and other pathways (such as percolation flows).
[35] The model includes a simple representation of the

Chino Groundwater basin aquifer in which ‘‘effective safe
yield’’ for pumping and direct use is endogenously calcu-
lated at 5-year intervals throughout the simulation such that
groundwater inflows (e.g., percolation from overlying
catchments and replenishment by imported, recycled, and

Figure 7. Representative temperature and precipitation
sequences for the IEUA region derived using K-nn
conditioned to recreate the extremes of the regional trend
PDFs.

Figure 8. Map of the IEUA service area, California, USA. The city of Ontario is located at 34�N,
117�410W.
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local storm water) are balanced with outflows (e.g., pumped
water for treatment and direct use). The time series of
monthly weather parameters drive the system’s hydrology
via a soil-moisture model embedded in WEAP. The specific
model specification was based on the IEUA RUWMP,
Chino Basin Optimum Management Program [Wildermuth
Environmental, 1999], and other regional studies [e.g.,
Husing, 2006].
[36] Model calibration consisted of four main tasks:

(1) tuning WEAP parameters so that modeled demand under
historical climate and projected land-use and demographic
assumptions match the demand forecast reported in the
IEUA RUWMP; (2) tuning the Chino Basin catchment
parameters so that percolation of historical precipitation
and planned groundwater replenishment leads to the total
basin inflow required to balance extractions according to the
Chino Basin Peace I agreement [Chino Basin Watermaster,
2000]; (3) tuning Metropolitan import parameters so that
periods of dry years trigger expected shortfalls in import
deliveries; (4) tuning the upper catchment and local river
flow so that local supplies vary with precipitation within the
historical range described in the IEUA RUWMP. Please
refer to the study of Groves et al. [2008a, 2008b] for details
on model specification and calibration.
[37] On the basis of the modeling specification, the

pathways through which climatic change can affect water
management conditions in the IEUA region are: (1) irriga-
tion requirements, (2) rates of groundwater infiltration,
(3) availability of local supplies for direct use and ground-
water replenishment, and (4) availability of imported
supplies for direct use and groundwater replenishment.
The subsections below describe the range of plausible
climate change impacts upon the IUEA water management

system derived from the global climate models via the
Bayesian-K-nn methodology.
4.1.1. Outdoor Irrigation Demands
[38] Changes in precipitation and temperature will affect

outdoor irrigation demand. WEAP computes irrigation
requirements for each catchment (e.g., contiguous region
with similar hydrologic characteristics) by using a soil
moisture algorithm [Yates et al., 2005a, 2005b] that factors
in monthly temperature and precipitation, crop moisture
requirements (parameterized by a crop coefficient), surface
runoff characteristics, soil water capacity and conductivity,
and bulk parameters that specify when irrigation water is
needed as a function of soil moisture. This formulation
specifies that increased air temperature leads to higher
potential evapotranspiration (PET) rates and greater land-
scape water needs. There are other potentially important
effects that climate could have upon evapotranspiration not
considered by the WEAP model, such as temperature effects
on crops and their growing season [Lobell et al., 2006] and
effects of CO2 on crop photosynthesis [Kimball et al.,
2002].
[39] Figure 9 shows traces of outdoor urban irrigation

demand (including domestic and commercial landscaping),
averaged over 20 weather sequences for five different
climate trends (corresponding to climate change deciles 1,
3, 5, 7 and 9), assuming that all other 2005 conditions
remain constant (e.g., land use patterns, demand factors, and
water supply variability). The gray bars indicate the ranges
of outdoor demand by year for all 180 sequences reflective
of all nine climate change deciles. The figure suggests
increased water demands under hotter and drier weather
projections (up to an 11% increase by 2040, or an increase
of 0.28 centimeters per year for decile 1) and significantly
lower water demand under the wetter weather sequences (up

Figure 9. Projected outdoor water demand (in centimeters per year) for the IEUA region under different
weather sequences consistent with the climate change projections from the AOGCMs. The lines indicate
averages over 20 sequences for deciles 1, 3, 5, 7, and 9. The shaded bars indicate the entire range of
annual demand per year. Note that the deciles are defined based on the conditioning precipitation and
temperature trends used in the K-nn procedure. They are not defined based on the output data shown here
and thus will not always order according to decile.
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to a 10% decrease by 2040, or a decrease of 0.33 centi-
meters per year for decile 9). The interannual variability
reflected by the ranges of all annual demand projections is
substantially larger than the average trends in demand. Note
that in the IEUA region, these climate-induced trends would
be superimposed upon rising urban water demands because
of projected landscape conversion from agricultural lands
and open space to urban development.
4.1.2. Local Supplies
[40] Trends in precipitation will change the availability of

local stream flow for municipal supplies. Although a WEAP
model could be constructed to explicitly model runoff to
these local waterways, this application parameterizes the
stream flow that are the source of local surface water supply
such that during low precipitation years (as defined by the
weather sequence being used) a lower supply is available
for direct use and groundwater replenishment. This param-
eterization is tuned so that historical precipitation sequen-
ces lead to local supply availability commensurate with
that observed historically (about 20 million m3/year, on
average).
[41] Figure 10 shows traces of local surface supplies,

averaged over 20 sequences for five different climate trends
(deciles 1, 3, 5, 7 and 9). The gray bars indicate the ranges
of local surface supply by year for each of the 180
sequences representative of the nine climate change deciles.
The range of local surface supplies for the derived weather
sequences suggests decreased supplies under hotter and
drier weather projections (substantial supply decreases of
42% by 2040—191 thousand m3/year for decile 1) and
greater supplies under the wetter weather sequences (up to a
42% increase by 2040—199 thousand m3/year for decile 9).
The interannual variability reflected by the ranges of all 180
local supply projections is substantially larger than the
average trends in the local supply by decile.

4.1.3. Groundwater Infiltration
[42] Trends in precipitation could change the amount of

precipitation that percolates into the underlying aquifer. The
WEAP model calculates the share of monthly precipitation
that (1) is evapotranspired by the land surface; (2) flows off
of the catchment surface into surface streams; (3) percolates
into the root-zone and flows laterally to adjacent surface
streams; and (4) percolates from the root-zone into the
underlying aquifer. Precipitation that percolates beyond
the root zone is the primary source of inflow to the
underlying Chino Groundwater basin aquifer. Groundwater
replenishment using imported, recycled, and local storm
water via percolation is also simulated. The model structure
assumes that percolation is linearly related to precipitation.
[43] To evaluate the effects of climate change on the

groundwater basin management, we simulated how the
180 climate sequences affect the Chino Basin storage
assuming that development and water management patterns
unfold as projected in the IEUA RUWMP (Figure 11). In
these simulations the management of the Chino Basin is
fixed—it does not respond to rising or declining groundwa-
ter levels. The climate sequences that exhibit positive trends
in precipitation lead to increasing groundwater storage, and
the climate sequences with negative precipitation treads lead
to decreases in groundwater storage. Groundwater levels
decline by about 15% (or 950 million m3/year) under decile
1 climate sequences and increase by 13% (or 789 million m3/
year) under decile 9 climate sequences over the 35-year
simulation period.
[44] Per the OBMP, groundwater extractions would be

limited if the amount of water stored in the aquifer were to
significantly decline. To evaluate how changes in pumping
permits to ensure sustainability would affect overall ground-
water extractions under the various climate change scenarios,
the model adjusts groundwater extractions every 5 years so

Figure 10. Projected local surface supply (in million cubic meter per year) for the IEUA region under
different weather sequences consistent with the climate change projections from the AOGCMs. The lines
indicate averages over 20 sequences for deciles 1, 3, 5, 7, and 9. The shaded bars indicate the entire range
of local supply availability. Note that the deciles are defined based on the conditioning precipitation and
temperature trends used in the K-nn procedure. They are not defined based on the output data shown here
and thus will not always order according to decile.
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that total groundwater storage remains at the current level
(about 6.2 trillion m3). Figure 12 shows the projected
extractions under the IEUA RUWMP assumptions (solid
line) and average extractions by year for the weather sequen-
ces corresponding to climate change deciles 1, 3, 5, 7, and 9.
The shaded region represents the range of all simulations.
Declines in supply are due to projected groundwater pumping
reductions mandated in response to falling groundwater

levels. Note that restrictions are enacted or eased every five
years, per the OBMP. These simulations suggest that under
more severe climate change scenarios (i.e., lower climate
change deciles) significant declines in allowable groundwa-
ter extractions could be mandated. Specifically, the average
restrictions under deciles 1 and 3 after 2010 (when the model
first evaluates the condition of the groundwater basin and
adjusts allowable extractions as needed) is 30.8 million m3/year

Figure 11. Chino Basin groundwater storage projections (trillion cubic meter) assuming no change in
management under different weather sequences reflective of climate deciles 1, 3, 5, 7, and 9. Lines
indicate averages across 20 sequences for each decile. The shaded region indicates the range of results
across all 180 sequences (20 sequences for each of the 9 deciles). Note that the deciles are defined based
on the conditioning precipitation and temperature trends used in the K-nn procedure. They are not
defined based on the output data shown here and thus will not always order according to decile.

Figure 12. Projections of allowable groundwater extractions (million cubic meter) from the Chino
Basin under climate change scenarios and adaptive groundwater management. The lines indicate average
extractions (across 20 sequences) for deciles 1, 3, 5, 7, and 9. Shaded region indicates the range of results
from the 180 sequences. Note that the deciles are defined based on the conditioning precipitation and
temperature trends used in the K-nn procedure. They are not defined based on the output data shown here
and thus will not always order according to decile.
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(or 14% of the total groundwater supply) and 17.3 million
m3/year (or 8% of the total), respectively. Restrictions under
individual plausible weather sequences are even more
significant, as seen by the range results in Figure 12.
4.1.4. Imports
[45] The amount of imported supply available to IEUA

will also likely be affected by changed climatic conditions in
the Sacramento Valley (the source region of the California
State Water Project) [Barnett et al., 2008; Department of
Water Resources, 2006; Vicuna, 2006; Zhu et al., 2005]. As
this case-study did not explicitly model the hydrologic
response of the Sacramento Valley river flow to climate
change, we evaluate the effects of various reductions in
available imports on the water management implications
section below.

4.2. Implications for Current Management Plans

[46] We now address the question of how climate change
impacts will affect the overall performance of the IEUA’s
water management plans. Specifically, we present how
plausible climate changes, as suggested by the 21 AOGCMs
and translated into local temperature and precipitation
sequences using K-nn, would affect the performance of
the region’s current plans (i.e., the IEUA RUWMP; IEUA
[2005]) under several levels of decline in imported supply
availability. It is important to note that this approach does
not explicitly consider uncertainties associated with the
downscaling procedure or hydrologic modeling routines
used by the WEAP model.
[47] The IEUA RUWMP’s primary approach to address-

ing new water supply needs includes (1) increasing the use
of the Chino Basin groundwater by about 75% through
increased groundwater replenishment and (2) developing an
extensive recycled water system to deliver up to 85 million
m3/year of supply by 2025 (2005 recycled deliveries totaled
only about 9.9 million m3). To summarize the effects that
climate change would have on the performance of the
region’s plans with respect to supply and demand, the
WEAP model calculates the average annual surplus (de-
fined as the difference between total available water supply
and total water demand) from 2021–2030 and from 2031–
2040. Annual reliability is also calculated by counting the
fraction of years in which the surplus is negative and
subtracting that from one. Note that according to the IEUA
RUWMP, the region would enjoy an excess of available
supply that would grow from 17.9 million m3 in 2005 to
101.3 million m3 by 2025 under historical conditions.
[48] As this model does not explicitly evaluate the climate

change impacts on the SWP source regions, we calculate the
performance of the IEUA RUWMP under the 180 weather
sequences (reflecting local changes in climate) for three
levels of fixed imports: current projections, a 20% decline
by 2040, and a 40% decline by 2040. These three levels
were selected to represent the range of declines suggested
by several recent studies that estimated the reliability of
SWP deliveries under different climate change scenarios
[Department of Water Resources, 2006; Vicuna, 2006; Zhu
et al., 2006]. Note that annual imports are also restricted
during local-dry years according to the IEUA RUWMP
projections for single-dry year SWP deliveries to the region.
[49] Under no climate trends and no declines in imports

the average surplus is about 88.8 million m3 between 2021
and 2030 and 82.6 million m3 between 2031 and 2040 (top

line of Table 2), and reliability is estimated to be 100%.
Under declining average imports, however, the average
surplus decreases to 61.7 million m3 in 2030–2040 for
20% import declines and 34.5 million m3 in 2030–2040 for
a 40% decline in imports. Reliability decreases to 96%.
[50] Under the sequences in which precipitation increases

on average (deciles 7 and 9), conditions are as good as or
better than under those without climate trends (Rows 5
and 6). In these cases, increases in precipitation offset the
warming increases projected under deciles 7 and 9. Decile 5,
which exhibits a slightly declining precipitation and temper-
ature increases, leads to worsening conditions for the IEUA
service area when compounded with declines in imports. In
the 2031–2040 time period with 20% declines in imports,
the average surplus decreases by 21.0 million m3 and
reliability decreases to 96%. Under a 40% decline in imports,
average surplus decreases to 6.8 million m3 by the 2031–
2040 time period and reliability decreases to 78%. Under
climate changes consistent with deciles 3 and 1, the region
experiences reduced reliability and significantly lower aver-
age surpluses even when there are no declines in imports. By
the 2031–2040 time period, the region’s supply buffer is
eliminated regardless of the effects on MWD imports, and
reliability decreases to less than 40% under the 20% and
40% declines in imports.

5. Summary and Discussion

[51] This paper describes a methodology for developing
sequences of monthly local weather data that reflect region-
al climate trends as projected by global climate models.
These sequences provide a quantitative representation of
plausible climate change impacts and can be used by water
management models to stress test water management plans.
[52] The methodology first develops PDFs of temperature

and precipitation trends for a region from individual
AOGCM results using the criteria of bias and convergence
[Tebaldi et al., 2005]. It then creates sequences of local
weather using the K-nn bootstrapping technique [Yates et
al., 2003] that resamples daily historical weather data such
that the future sequences have the same statistical character-
istics of local weather but are consistent with the range of
AOGCM-derived temperature and precipitation trends. This
method overcomes the limitations accompanying an analy-
sis that uses individual, nuanced AOGCM runs. Utilizing
numerous sequences with similar underlying climate trends
can be useful, as the timing and duration of droughts can
make the difference between successful and unsuccessful
long-term water management strategies.
[53] A key limitation of the K-nn approach as imple-

mented here is the challenge to estimate the weighting
parameter, dw

i , that correctly biases the new weather sequen-
ces to properly reflect the AOGCM ensembles both sea-
sonally and inter-annually. This is currently done manually,
through trial-and-error. The applied method also does not
guarantee that all climate impacts are accounted for nor that
all possible uncertainties are addressed.
[54] The method described here provides data to support

a climate impact assessment. A common approach is to
evaluate management strategies against a few projections of
altered climatic conditions (often including ‘‘bookend’’
projections). Bookend climate projections can be useful to
illustrate the range of possible outcomes, but they do not
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provide water managers with information about how much
climate change a water agency can reasonably accommo-
date under different management strategies, for example.
[55] Water planners also face other important uncertainties

about future conditions, and the derived climate sequences
can also be combined with other assumptions about uncertain
planning conditions to develop numerous scenarios. A
systematic evaluation of these scenarios can help answer
questions such as: ‘‘How bad must climatic changes be
before our agency should invest in some new infrastructure
or implement a particular water efficiency program?’’ and
‘‘What conditions would need to prevail for me to wish I
had made alterative strategic decisions?’’
[56] A key challenge is how to use these large ensembles

of scenarios in a systematic decision analysis. Standard
decision theory would call for the assignment of probabil-
ities to each scenario and weighting of the results. Such an
approach could lead to the identification of ‘‘optimal’’ water
management strategies (provided that a single utility func-
tion could be defined). When the uncertainty about the
future cannot be uniquely characterized by probabilistic
means, however, alternative decision analytic methods
may be required [Groves and Lempert, 2007; Grubler and
Nakicenovic, 2001; Hall, 2007; Lempert et al., 2004; New et
al., 2007; Wack, 1985].
[57] In the case of long-term water planning in the IEUA

region, the cascading uncertainty from global greenhouse
gas emissions estimates, to the global and regional climate
response, to the local, downscaled hydrological response,
makes it difficult to assign credible probabilistic uncertainty
characterizations to changes in precipitation and tempera-
ture in the IEUA region and the source region of its
imported supplies. Uncertainty about other management
conditions, such as the ability for the region to aggressively
expand its recycled water system, also cannot be easily
characterized.
[58] Under conditions of so-called ‘‘deep uncertainty’’ the

identification of robust solutions may be a more fruitful
pursuit. Robust decision making (RDM) [Groves and
Lempert, 2007; Lempert et al., 2003, 2006] is a structured,
scenario-based analytic approach for identifying solutions
that perform adequately across a wide range of plausible
future conditions. In brief, RDM first evaluates the per-

formance of different strategies against a large set of
scenarios. RDM then analyzes the resultant database using
visualization and statistical techniques to identify condi-
tions under which the leading strategies perform poorly.
Identifying alternative strategies that are insensitive to
these vulnerabilities can then help develop hedging actions
to augment the promising strategies. Note that it is
common to factor in cost when estimating how well a
policy will fare, thus robust policies are not necessarily
those that cost more. In the end, no strategy can be robust
to all possible future conditions. The characterizations of
vulnerabilities then provide decision makers with key
tradeoff information to help them understand how a
differing world view about critical uncertainties (such as
climate change effects) would impact sensible choices.
[59] In this paper, the case study evaluates the implica-

tions of 180 different weather projections upon IEUA’s
current urban water management plan. The results showed
that under drying climate sequences, outdoor water demand
could increase substantially at the same time as local surface
water supplies and groundwater resources become more
constrained. Together, the effects would lead to reductions
in the planned supply buffer and possible shortages. Com-
pounding these local effects with declines in imports (driven
by climate change or other factors in the imported water
source region) would impacts IEUA water management
even more.
[60] Groves et al. [2008a, 2008b] build on this analysis

and evaluate how alternative management strategies for the
IEUA region would perform against this range of plausible
climate changes and other management uncertainties. Their
robust decision making analysis finds that much of the
IEUA region’s vulnerability to climate change could be
reduced by more aggressive promotion of water use effi-
ciency in the near-term and investments in storm water
capture for groundwater recharge if conditions deteriorate
over the long-term. These strategies prove to be more robust
than IEUA current plans because the cost of new invest-
ments are outweighed in a vast majority of the conditions
evaluated by reductions in costly shortages and through the
reduction in use of expensive imported supplies.
[61] These results were shown to stakeholder groups

consisting of water managers and elected officials from

Table 2. Average Annual Surplus (in Million Cubic Meter) and Reliability (%, See Key) Under Different Climate Change Trends

(Rows), Trends in Imports (Major Columns), and Time Periods (Minor Columns)

Climate
Change
Trend

Average Annual Surplus (million m3) and Reliability (see key)

No Decline in Imports 20% Decline in Imports by 2040 40% Decline in Imports by 2040

2021–2030 2031–2040 2021–2030 2031–2040 2021–2030 2031–2040

No climate trend 89.2 82.8 75.5 62.0 60.8 33.9a

Decile 1 35.5a �12.3b 20.1a �55.5d 0.2b �115.0d

Decile 3 47.1a 41.1a 31.2a 13.4a 14.2b �31.5c

Decile 5 76.8 62.7 63.2 40.7a 47.2a 6.8b

Decile 7 89.7 78.8 76.4 60.2 61.9 34.0a

Decile 9 109.3 102.3 96.8 83.8 84.2 65.3

Bold data correspond to a reliability of less than 80%.
aReliability range of 80%–100%.
bReliability range of 60%–79%.
cReliability range of 40%–59%.
dReliability range of less than 40%.
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the IEUA region. An analysis of surveys administered
before and after the presentations suggests that the partic-
ipants are concerned about climate change impacts on their
water system and that large scenario ensembles evaluated
with RDM methods can be useful in crafting a prudent
response.
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